No Tangled Web - Greener Polymers are Stronger, Too
19/01/2016

 

 

 
Bulletproof jackets, yacht sails and tow lines are made of fabrics and ropes designed to withstand enormous force. Those fabrics and ropes are, in turn, woven or twisted from fibres made of artificial polymers, such as polyethylene, specially prepared in ways that make them strong.

Unfortunately, this preparation uses inflammable and toxic solvents. That makes it hazardous for workers and potentially bad for the environment. But this may change if a team of materials scientists led by Paul Smith and Theo Tervoort at ETH Zurich has its way. As they write in Macromolecules, Dr Smith and Dr Tervoort have been trying to make strong polymer fibres using less-nasty solvents. Not only have they succeeded, their virtue has been rewarded by the discovery that this approach creates even stronger materials than the old and noxious one.

Polymers are long, chainlike molecules. Each link in the chain is either an identical chemical unit (as in the case of polyethylene) or one of a small set of such units (as in the case of nylon, which has two sorts of link). Such chains tend to intertwine in a disorderly fashion when part of a solid. Strength, however, requires order. To make a strong material the individual molecules should, as far as possible, be stretched out in parallel with one another, thus forming an elongated crystal, and the crystals should then be similarly aligned in a fibre as that fibre is being drawn.
 
If fibres are drawn directly from liquid polymers, they will solidify in a disorderly way. In a solution, though, the molecular chains can slip past each other, straightening themselves out and aligning themselves in the same direction, thus forming crystals. Then, when a thread is drawn, these crystals will line up along its axis. More
 
 
Read the research article, High-Performance Polyethylene Fibers “Al Dente”: Improved Gel-Spinning of Ultrahigh Molecular Weight Polyethylene Using Vegetable Oils, by Dr Paul Smith, Dr Theo Tervoorthere, Raphael Schaller and Kirill Feldman here